Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 858(Pt 3): 159581, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36397605

RESUMO

Efficient substrate metabolism is the premise for stable operation of aerobic granular sludge and can be regulated by quorum sensing (QS). In this study, starch and acetate were selected to represent complex and simple substrates to provide comparable amount of metabolic energy for granules cultivation. Starch-fed granules were larger in size and contained higher EPS content than acetate-fed granules, though both granules exhibited similar substrate-degradation rates during sequencing batch reactor (SBR) cycle. Three N-acylhomoserine lactones (AHLs), including C8-HSL, 3OHC8-HSL and 3OHC12-HSL, were detected as dominant autoinducers in granules. They accumulated more in starch-fed granules than acetate-fed granules. The batch experiments were implemented to investigate QS regulation for granular stability in terms of substrate hydrolysis and transformation. The addition of three AHLs increased the activity of α-amylase, the main starch hydrolase, 4-6 times, significantly (p < 0.01) higher than the control treatment without AHLs amendment. While activity of dehydrogenase, the main simple substrate degradation enzyme, was increased only 1-2 times. Higher enzyme activity, especially α-amylase, significantly (p < 0.05) promoted the substrate-degradation rate (65 % than control group) and EPS yield in starch-fed system. Overall, QS can facilitate complex substrate uptake via hydrolysis enhancement and EPS secretion, which together promote sludge granulation and stability.


Assuntos
Acil-Butirolactonas , Homosserina , Esgotos , alfa-Amilases , Amido
2.
J Environ Manage ; 323: 116293, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36261993

RESUMO

Aerobic granular sludge (AGS) technology has been widely studied as "The Next Generation Wastewater Treatment technology". The effect of hydraulic conditions on the structural stability of AGS has been widely studied. However, the function of flow regime on the AGS stability, especially dissolved oxygen (DO) mass transfer, is still unknown. In this study, we used the Reynolds number (Re) to quantify the flow regime and selected different stages of AGS as experimental subjects. Results showed that the relatively suitable Re (Re = 150) could create lower DO mass transfer limitation (Lc = 27.4 µm) and increase protein (PN) contents and the abundance of hydrophobic functional groups in AGS. At this condition (Re = 150), the interfacial Gibbs free energy of sludge-water (ΔGLSa) was at a lower state (-129.75 ± 2.15 mJ·m-2), which favored the stability of AGS. Principal component analysis (PCA) and correlation analysis indicated that the response of ΔGLSa was affected by Lc, PN, and hydrophobic groups. In addition, results obtained for unstable AGS further verified that suitable Re regulates the structural stability of AGS. This study deepens the understanding of Re as an important hydraulic parameter for structural stability of AGS, which is also of great significance for energy saving of sequential batch reactors (SBRs) with agitation in practical engineering.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Humanos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Reatores Biológicos , Aerobiose , Termodinâmica , Proteínas , Oxigênio , Água
3.
Environ Res ; 208: 112693, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065066

RESUMO

Interfacial Gibbs free energy (IGFE) as a thermodynamic indicator characterize the stability of the natural system. For aerobic granular sludge (AGS), how IGFE determines the stability of sludge remains to be determined. The Gibbs free energy change at the AGS-water interface (ΔGswa) and AGS interfaces (ΔGsc) were selected as the main interfacial thermodynamic factors. Results indicated that the stable AGS was guaranteed with ΔGsc at the range of -31 to - 46 J m-2. Pearson correlation coefficients between ΔGswa/ ΔGsc and relative hydrophobicity, water content, SVI30, integrity coefficient were -0.9, 0.8, 0.85, and 0.84, which illustrated that the IGFE could be a more comprehensive thermodynamic indicator. Microbial community and EPS analysis verified the importance of denitrifiers, Amide III, protein-like substances for AGS stability. This work offers a new insight into the development of AGS stability based on IGFE.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Esgotos , Aerobiose , Reatores Biológicos , Eliminação de Resíduos Líquidos
4.
J Environ Manage ; 303: 114091, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34861497

RESUMO

Aerobic granular sludge (AGS) has excellent performance in wastewater treatment. However, the formation and mechanism of AGS by effluent reflux are not fully understood in sequential batch reactors (SBRs). In this study, two reactors were constructed, among which R1 was the control group, and the R2 reactor refluxed one-fourth of the supernatant of the effluent to the influent water. In the reactor of R2, the granules had better COD and TN removal efficiencies and resistance to external shocks, and AGS produced more extracellular polymeric substances (EPS). Analysis of microbial community indicated that AHLs-mediated microbes, denitrifying microbes, and EPS producers were enriched. At the same time, the correlation between 3OC6-HSL, C8-HSL, C12-HSL and PN was 0.89*, 0.94** and 0.92* respectively, the possible mechanism of enhanced granulation was mainly the promotion of AHLs by effluent reflux. Therefore, the effluent reflux strategy could be an innovative and sustainable strategy that validates the function of AHLs-mediated QS to accelerate aerobic sludge granulation and maintain its structural stability.


Assuntos
Microbiota , Esgotos , Acil-Butirolactonas , Reatores Biológicos , Percepção de Quorum
5.
Sci Total Environ ; 673: 83-91, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30986684

RESUMO

According to the relationship among microbial activity, quorum sensing (QS) and structural stability of aerobic granular sludge, the mechanism of QS regulation for microbial activity and granular stability was investigated in AGS process. Results showed that ATP content decreased sharply from 1.8 µmol/gVSS of stable granules to 0.8 µmol/gVSS of disintegrating granules, and the relative abundance of QS-activity microbes, Rhodobacter spp. and Xanthomonadaceae decreased in initially unstable granules compared with stable granules. The main AHLs were detected in this study, and C8-HSL, 3OHC8-HSL and 3OHC12-HSL decreased significantly when structure of granules changed from stability to disintegration. Accompanying with the decrease of AHLs level, the extracellular polymeric substances (EPS) content in initially unstable granules decreased sharply from 226.8 to 163.6 mg/gVSS with the ratio of extracellular protein to exopolysaccharide (PN/PS) decreasing from 3.6 to 2.2, despite EPS-secretion microbes enriched. The effect of QS on microbial activity was proved by AHL add-back study, results indicated that ATP and EPS content in sludge increased significantly (p < 0.05) with AHLs added, but EPS production was limited when ATP synthesis was disrupted. It was concluded that the AHLs-based QS favored the granular stability via the enhancement of ATP synthesis in microbes. This study provides a new perspective for QS regulation in aerobic granular sludge system, because the ATP regulated by QS could be the energy currency for cellular metabolism, such as nutrient removal, degradation of emerging pollutants, microbial growth and other aspects.


Assuntos
Acil-Butirolactonas/metabolismo , Trifosfato de Adenosina/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Percepção de Quorum , Eliminação de Resíduos Líquidos/métodos , Aerobiose , Reatores Biológicos , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...